Doped Calcium Silicate Ceramics: A New Class of Candidates for Synthetic Bone Substitutes

نویسندگان

  • Young Jung No
  • Jiao Jiao Li
  • Hala Zreiqat
چکیده

Doped calcium silicate ceramics (DCSCs) have recently gained immense interest as a new class of candidates for the treatment of bone defects. Although calcium phosphates and bioactive glasses have remained the mainstream of ceramic bone substitutes, their clinical use is limited by suboptimal mechanical properties. DCSCs are a class of calcium silicate ceramics which are developed through the ionic substitution of calcium ions, the incorporation of metal oxides into the base binary xCaO-ySiO₂ system, or a combination of both. Due to their unique compositions and ability to release bioactive ions, DCSCs exhibit enhanced mechanical and biological properties. Such characteristics offer significant advantages over existing ceramic bone substitutes, and underline the future potential of adopting DCSCs for clinical use in bone reconstruction to produce improved outcomes. This review will discuss the effects of different dopant elements and oxides on the characteristics of DCSCs for applications in bone repair, including mechanical properties, degradation and ion release characteristics, radiopacity, and biological activity (in vitro and in vivo). Recent advances in the development of DCSCs for broader clinical applications will also be discussed, including DCSC composites, coated DCSC scaffolds and DCSC-coated metal implants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Artificial intelligence investigation of three silicates bioceramics-magnetite bio-nanocomposite: Hyperthermia and biomedical applications

Objective(s): Bioactive silicate ceramics have favorable features for applying as off-the-shelf bone and artificial tissue. Calcium silicate can enhance the generation of an immediate bond with host bone without an intervening rough surface in the bone layer. However, the silicate bioceramics have some drawback regarding their mechanical properties and chemical stabilities. Materials and Method...

متن کامل

Synthetic calcium phosphate ceramics for treatment of bone fractures.

Bone is a complex natural material with outstanding mechanical properties and remarkable self-healing capabilities. The mechanical strength is achieved by a complex structure of a mineral part comprising apatitic calcium phosphate crystals embedded in an organic matrix. Bone also contains several types of cells constantly replacing mature bone with new bone. These cells are able to seal fractur...

متن کامل

A NEW GENERATION OF OXYNITRIDE GLASSES CONTAINING FLUORINE

Oxynitride glasses are found as grain boundary phases in silicon nitride ceramics. They are effectively alumino-silicate glasses in which nitrogen substitutes for oxygen in the glass network, and this causes increases in glass transition and softening temperatures, viscosities (by two to three orders of magnitude), elastic moduli and microhardness. Calcium silicate-based glasses containing fluo...

متن کامل

Ceramic drug delivery: a perspective.

Different ceramic substances are offered in the market as bone substitute materials. These include monophasic calcium phosphate ceramics of tricalciumphosphate (TCP) or hydroxyapatite (HA), biphasic calcium phosphate ceramics and multiphasic bio-glasses synthetic calcium phosphate cements. Ceramics with appropriate three-dimensional geometry are able to bind and concentrate bone morphogenetic p...

متن کامل

Ion-Doped Silicate Bioceramic Coating of Ti-Based Implant

Titanium and its alloy are known as important load-bearing biomaterials. The major drawbacks of these metals are fibrous formation and low corrosion rate after implantation. The surface modification of biomedical implants through various methods such as plasma spray improves their osseointegration and clinical lifetime. Different materials have been already used as coatings on biomedical implan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017